
www.manaraa.com

An Abstraction-Based Analysis of Rule Systemsfor Active Database Management SystemsTarek S. Ghazi and Michael HuthDepartment of Computing and Information SciencesKansas State University, Manhattan, KS66506, USAfghazit,huthg@cis.ksu.eduAbstract. An active database management system (ADBMS) augmentsa conventional DBMS with the capability to automatically react to stim-uli occurring within and outside a database. This is usually achieved byincorporating a DBMS with a set of rules which determine the actionsa DBMS should automatically execute when certain events and condi-tions arise. In this manner ADBMSs can be used to enforce and manageintegrity constraints, provide security in databases, or act as alerters ortriggers. However, one would like to be sure that the execution of somechain of rules is guaranteed to terminate; or that a set of rules interactsin a manner that is consistent with their intended semantics. We exam-ine model checking and abstract interpretation as a possible frameworkfor automatically analyzing and designing ADBMS rule systems. Ourproposal provides the foundations for a tool that can be used to isolateproperties of a given rule system's behavior. We implemented a proto-type in the veri�cation tool Spin by writing a GUI for rule system designand a Promela code generator for rule system analysis.1 MotivationWith a conventional database management system (DBMS), insertions, dele-tions, and other manipulations of data are performed via user commands orapplication programs. This passive and potentially limiting characteristic ofDBMSs is the primary motivation behind recent attempts to integrate databasesystems with sets of rules that de�ne the circumstances when a DBMS mayexecute some actions automatically [19]. Active database management systems(ADBMSs) provide this additional capability by adding features allowing oneto de�ne rules that will be processed automatically when certain external orinternal events, such as changes to the database state or a request from anotherresource, arise [12]. ADBMSs may thus automate enforcement and managementof integrity constraints, database security, and alerting users of important trans-actions [1, 19].As the popularity of active database management systems has grown, so hasthe demand for tools assisting ADBMS designers, users, and administrators whowish to analyze how a group of rules will interact [12]. Predicting the behaviorof rules based on chosen simulation runs raises the same concerns which apply

www.manaraa.com

to veri�cation of general software based on such a methodology [7]. We there-fore propose to use the well established methodology of model checking [4, 18] insuch a way that the design and formal veri�cation of speci�ed rule interactionconstitutes an integrated and holistic activity. Model checking requires a descrip-tion language within which one formulates a �nite mathematical model, M, ofthe computational situation at hand, a speci�cation language in which one maywrite down the behavior, �, sought to be satis�ed by the system one models, andan e�ciently executable semantics of the satisfaction relation M j= � betweena model and its speci�cation. The actual framework we chose is that of the de-scription language Promela, its speci�cation language/logic LTL [17], and thetool Spin with its property veri�er 1 | this decision was obtained empirically asour implementation based on SMV [15] and CTL [8] did not perform well at all,due to the fact that SMV's case-statement, unlike Promela's if-statement, has adeterministic semantics.Since events which trigger rules may depend on non-discrete or unboundedparameters, such as conditions on the concrete values of �eld entries in tables,all plausible faithful models of ADBMSs will have an in�nite state space and,as such, are not analyzable with conventional formal veri�cation tools. However,we will identify abstractions on the state space and its state transitions, draw-ing from the rich literature on model checking and abstraction (see e.g. [6, 10,9]) and its conceptual origin in abstract interpretation [11]. This will allow safeapproximations of vital system behavior: the termination of rule triggering, thedeterminacy of precedence orders between triggered rules, or the responsivenessbetween rule activations (e.g. Owicki's and Lamport's \leads-to" operator [16])etc. While the research literature on model checking and abstraction mainly fo-cuses on the mathematical foundations at the level of labeled transitions systems(e.g. the democratic Kripke structures in [9]), actual implementations, based onsymbolic OBDD-based approaches [3, 15], realize abstractions directly by an ab-stract interpretation [11] of the symbolic execution semantics, or the operationalsemantics of conventional program code. This is also the approach we will takein this paper, for our main objective is a practical one of obtaining executableabstract models of ADBMSs' rule systems with the capacity of making safejudgments of rule interactions. Hence, we also need to provide a rationale forthe safety enjoyed by our particular abstract interpretation. Similar practicalconcerns led us to animating such a framework in an existing tool for modelchecking, allowing for a fast prototyping and enabling us to make use of ampletool support, such as countertrace generations and other forms of diagnostics.In Section 2 we describe the common functionality of most ADBMSs' rulesystems as an intermediate language for rule speci�cation whose syntax, pre-sented informally, does not commit to a speci�c ADBMS, while at the sametime allowing straightforward compilations of actual rule system designs intothis language. In Section 3 we derive the formal semantics of our intermedi-ate rule processing language by translating any rule system in a correspondingPromela program whose state transition system serves as the operational seman-1 netlib.bell-labs.com/netlib/spin/whatispin.html

www.manaraa.com

tics of the rule system. We explain this translation on our running example. Thissection also presents the approximating abstract interpretation of this semanticsand discusses what sort of properties is will analyze safely. In Section 4 we sketchthe architecture of our design and veri�cation tool. In Section 5 we mention re-lated work and Section 6 provides the conclusions as well as an outlook on futuredirections of this line of work.2 Intermediate language for rule designThere is a �rm consensus about the functional components of an ADBMS, jus-tifying the use of an intermediate language for rule design into which actual rulesystems may be compiled. We explain the necessary ADBMS functionality | aswell as our overall methodology | by means of a running example presentedin a Starburst-like format [22]. We will consider this format as our informal in-termediate language for rule design. Our example ADBMS stores employee andsalary information for a �ctitious corporation. We design a number of rules re-ecting the organization's bonus and salary policy and wish to analyze our rulesystem in order to verify the consistency of its implementation with our design.Table 1 summarizes the structure of our database. It is important to note thatthe underlying DBMS of a rule system can be based on any type of data model.For example, HiPAC [14] builds its rule system over an object-oriented DBMS,but the Starburst ADBMS is an extension of the Starburst relational DBMS[22]. Although HiPAC and Starburst rely on di�erent underlying data models,both provide the standard ADBMS functionality described in this section; thedata model is treated as an abstract one.emp table table containing employee informationempid unique employee id numbername name of employeesalary current salary of employeerank range from 1..10 of possible ranks (10 is the highest)bonus table table containing salary increase informationempid unique employee id numberraiseamnt dollar amount of next raiseTable 1. De�nition of tables and �elds in our corporate database.According to [12], an ADBMS must provide a mechanism for de�ning and man-aging event-condition-action (ECA) rules with syntax:ON [Event] IF [Condition] DO [Action]:Multiple events may occur for a given event type [12] (e.g. insertions and dele-tions for event type \data modi�cation"). The event associated with a rule char-acterizes the circumstances under which the rule is initially signaled or triggered

www.manaraa.com

[12, 14]. Starburst recognizes data modi�cation operations as possible rule trig-gering events [1, 5, 22, 23]. We con�ne our study to data modi�cations as eventtypes; events such as \Fri Oct 9 15:22:13 CDT 1998" pose a separate challenge toabstraction techniques. Table 2 de�nes four rules and their respective triggeringevents, conditions, and actions. For example, whenever a user initiates an updateto the rank �eld in the emp table, rule r1 will be triggered. Observe that suchevents are already abstractions as they leave the employee's identity implicit.An ECA rule's condition determines whether or not a triggered rule is actuallyactivated. Formally, a rule condition is a boolean expression whose truth valueis dependent on and determined by the state of the underlying database [12].For example, Table 2 shows that r1 is activated whenever an employee's rank isupdated, and that employee's new rank is less than 5. The condition for r2, onthe other hand, always evaluates to TRUE. This simply means that wheneveran update on bonus(rank) occurs, the rule is immediately activated. Such rulesare commonly referred to as event-action (EA) rules and are often used in prac-tice [12, 20]. Since performed actions may cause events to arise or disappear, wecan capture the execution semantics of ADBMSs as a state transition system.We will de�ne this state transition system by the operational semantics of thePromela program generated by the static information of a given rule system.An action may consist of a data modi�cation operation, a data retrieval op-eration, a transaction operation (ie. COMMIT/ABORT), or a call to externalprocedures or methods [12]. Starburst allows all of these to be de�ned as possibleactions [1]. However, in our examples, we limit ourselves to using only data mod-i�cation and data retrieval actions; modeling events and actions which interfacewith modules which are external to the underlying DBMS requires additionalmachinery. The execution model of an ADBMS's rule system provides a seman-tics for rule triggering and activation [12, 21, 23] and is the guiding principle ingenerating a Promela model for such systems. In general, the execution modelvaries widely among di�erent rule systems [21]. But even though Starburst imple-ments its own rule de�nition language, it still follows the generic ECA paradigmof our intermediate language. Thus, it is possible to uniformly model and verifyvarious execution models as long as they rest on the ECA format. In general,any ADBMS must have [12]: an underlying DBMS, a facility to de�ne a set ofrules, an event detector, a condition evaluator, and an action processor. Onlythe organization of these components varies over di�erent rule systems, makingour framework applicable to a whole range of actual ADBMS systems.Since events may trigger multiple rules at the same time, the execution modelof an ADBMS requires an explicit conict resolution policy [12] which regulateshow an ADBMS chooses a single rule from a set of triggered ones [23]. A commonapproach is to introduce priorities for rule triggerings. See rule 4 in Table 2 forhow we present such priorities in our running example. We should stress thatconict resolution precedes rule condition evaluation in the ECA paradigm. Thesemantics of a particular ADBMS execution trace is also dependent on an initialstate which is composed of a data part, responsible for condition evaluation, andan event part, which in conjunction with the conict resolution policy determines

www.manaraa.com

which rule(s) are triggered. Such an initial state determines a, possibly non-deterministic, computation which we illustrate on our running example. Theinitial date state is sketched in Table 3.Rule ECA de�nitionr1 ON update to emp(rank)IF new emp(rank) < 5THEN update bonus(raiseamnt)r2 ON update to bonus(raiseamnt)IF TRUETHEN update emp(salary)r3 ON update to emp(salary)IF emp(salary) > $50000THEN retrieve emp(empid,name,salary,rank)r4 ON update to emp(rank)IF TRUETHEN retrieve emp(empid,name,salary,rank)PRECEDES fr1gTable 2. Our complete rule system.
empid name salary rank empid raiseamnt1 Matt Shirley 50000 3 1 10002 Jasmine Reick 65000 4 2 15003 Darren King 45000 2 3 500Table 3. emp and bonus table.Now, suppose Matt and Jasmine receive promotions and need to have their ranksin their company increased by one; this represents the initial event part. Thisupdate on emp(rank) produces an event triggering rules r1 and r4. Starburstadds these rules to the consideration set Rc which initially is empty. Thus,Rc = fr1; r4g. If Rc contains multiple elements, the ADBMS applies its con-ict resolution policy for choosing a rule from Rc; so Starburst selects r4 forconsideration and removes it from Rc. Since r4's condition holds vacuously, thesystem proceeds to execute the action, which was de�ned as a data retrievaltransaction to display the current values of the tuples being updated. This ac-tion does not trigger any new rules. Although new rules were not triggered Rcstill contains r1 as a sole rule. Thus, r1 is chosen for consideration; its condi-tion also evaluates to TRUE, but for Matt only: r1's action increases Matt'sraiseamnt (in the bonus table) by, say, $500, but leaves Jasmine's raiseamntunchanged (since her rank equals 5). Furthermore, execution of this action trig-gers the rule r2 (see Table 4). In this manner r2 causes Matt's and Jasmine's

www.manaraa.com

salaries in the emp table to be increased by $1,500, and also triggers r3 whichdisplays the composite result of our initial update to the terminal. Thus, Matt'sand Jasmine's employee information will be displayed since their salaries aremore than $50,000. Thereafter, since Rc contains no more rules, rule processingterminates (see Table 4). The resulting values of the emp table are shown inTable 5. Although this particular system evolution seemed to work out just �ne,our rule system does have a design aw in it. Certainly, we would like to ensurethat whenever an employee's rank is updated then that employee's salary is alsoupdated. Using appropriate atomic propositional formula, one may write thisas an LTL formula G (update on emp rank! update on emp salary) recall-ing that an LTL formula holds in a state if it holds for all computation pathsbeginning in that state. Our Promela program generated by this rule systemspeci�cation indeed detects a countertrace to this invariant: we notice that anemployee's salary only gets updated if their new rank is less than �ve or if theirrank is updated at the same time as another employee's whose new rank is lessthan �ve. Thus, in our example run above Jasmine was lucky to have her rankupdated at the same time as Matt's! In order to correct this problem, we needto modify our rule system by replacing r2 with a new rule r5 which updates anemployee's salary whenever their rank is updated. Although formal veri�cationis not essential for spotting this error in our toy example, such support is neededas soon as the number of rules and their degree of non-determinism increase torealistic sizes.transaction event triggers Rc considered rule condition actioninitial update fr1; r4g fr1; r4g r4 TRUE retriever4's action N/A N/A fr1g N/A N/A N/AN/A N/A N/A fr1g r1 TRUE updater1's action update fr2g fr2g r2 TRUE updater2's action update fr3g fr3g r3 TRUE retriever3's action N/A N/A fg N/A N/A N/ATable 4. Complete summary of events following initial transaction.
empid name salary rank empid raiseamnt1 Matt Shirley 51500 4 1 15002 Jasmine Reick 66500 5 2 15003 Darren King 45000 2 3 500Table 5. emp and bonus tables after completion of rule processing.

www.manaraa.com

3 Abstract interpretation of possible behavior3.1 Operational semantics of rule systemsThe static information present in the rule system of Table 2 can be translatedinto a non-deterministic program in Promela in a completely automatic way.This translation is driven by the informal description of the execution modelwhich is being formalized by implementing it in Promela. The declarative partof this program#define N 4 /*defines the number of rules in our model*/mtype = fupdate,retrieve,emp,bonus,empid,name,salary,raiseamnt,rank,allg;/*symbolic constants representing our ADBMS's events, tables and fields*/typedef ecarule f /*record structure for storing rule information*/mtype triggeredby; /*the first three fields represent the event*/mtype triggeredtab; /*which causes this rule to be triggered*/mtype triggeredfie;mtype actionexec; /*the next three fields represent the action*/mtype actiontab; /*that occurs if this rule is executed*/mtype actionfie;bool rtype /*rtype is set to 0 if this is an EA rule*/g; /*rtype is set to 1 if this is an ECA rule*/ecarule rules[N]; /*array for keeping our rule information*/bool c[N]; /*boolean array representing our consideration set*/mtype i_event=update; /*our initial rule triggering transaction*/mtype i_table=emp;mtype i_field=rank;chan selected = [0] of fbyteg;/*communication interface between ADBMS's environment and system*/chan action = [0] of fmtype,mtype,mtype,boolg;/*communication interface between ADBMS's system and environment*/bool done;/*becomes true when consideration set is empty*//*this represents the termination of rule processing*/int temp;/*loop counter variable*/declares a type mtype of all events, tables and �elds occurring in our rule sys-tem, creates a record structure eacrule which stores the event (e.g. [update,emp,rank]) followed by the action resulting from the rule's execution (e.g.[update,bonus,raiseamnt]) and is concluded by a ag rtype indicating whetherthis is an EA or EAC rule. The array rules has that record type and stores theentire static rule information at a subsequent initialization point. The booleanarray c models our consideration set Rc, c[i] == 1 representing the considera-tion of rule ri+1. The next three lines declare the event part of the initial state:

www.manaraa.com

the transaction which is responsible for setting o� the active rule system. Weuse two channels selected and action as communication interfaces between twoprocesses: process environment, the ADBMS's execution environment, and pro-cess system, the system responsible for the evaluation of conditions. The processenvironment simply has to determine the next triggered rule, if any, which itpasses along as an index through the channel selected. The process system willthen determine the selected rule's associated action and decide whether this ac-tion will be executed or not. It will report back this decision as well as the actioncomponents to process environment along the channel action; the environmentprocess then uses that information in turn to determine the next selected rule.Finally, the boolean ag done will implement our termination check describedbelow and temp is a counter.The next portion of the programinit()f rules[0].triggeredby=update; /*assign rule 1's values*/rules[0].triggeredtab=emp;rules[0].triggeredfie=rank;rules[0].actionexec=update;rules[0].actiontab=bonus;rules[0].actionfie=raiseamnt;rules[0].rtype=1;rules[1].triggeredby=update; /*assign rule 2's values*/rules[1].triggeredtab=bonus;rules[1].triggeredfie=raiseamnt;rules[1].actionexec=update;rules[1].actiontab=emp;rules[1].actionfie=salary;rules[1].rtype=0;rules[2].triggeredby=update; /*assign rule 3's values*/rules[2].triggeredtab=emp;rules[2].triggeredfie=salary;rules[2].actionexec=retrieve;rules[2].actiontab=emp;rules[2].actionfie=all;rules[2].rtype=1;rules[3].triggeredby=update; /*assign rule 4's values*/rules[3].triggeredtab=emp;rules[3].triggeredfie=rank;rules[3].actionexec=retrieve;rules[3].actiontab=emp;rules[3].actionfie=all;rules[3].rtype=0;temp=0;

www.manaraa.com

do:: (temp<N) -> /*while (temp<4) do*/if:: i_event==rules[temp].triggeredby&& i_table==rules[temp].triggeredtab&& i_field==rules[temp].triggeredfie -> c[temp]=1;temp=temp+1/*if the initial transaction triggers rule i, add rule i to*//*Rc by setting c[temp] to 1... increment temp*//*the if structure is exited and control passes back to the do loop*/:: else -> temp=temp+1/*otherwise, do not set c[temp] to 1, and simply increment temp*//*the if structure is exited and control passes back to the do loop*/fi:: (temp>=N) -> breakod;done=0; /*done=0 indicates that Rc is not empty*//*done will be set to 1 only when Rc becomes*//*empty again, i.e. when rule processing terminates*/is an initialization phase which assign to the array rules all the static informa-tion represented in our rule system of Table 2. Then it inspects each rule to seewhether its event (represented by the sub-array [triggeredby,triggeredtab,triggeredfie]) matches the initial one; in that case c[i] is set to 1. To checkfor the termination of rule execution we initialize done to 0 modeling that theconsideration set Rc is non-empty; done will be set to 1 only if no more rulesare under consideration. Promela allows us to annotate the assignment done =1 with the label progress to check whether this program point is ever reached,thereby implementing a termination check.The program body runs the processes environment and system in a synchronousparallel composition:atomicfrun environment(); run system()ggThe Promela code for the environment processproctype environment()f mtype event,table,field;bool fire;/*choose a rule for consideration and send it to system()*/end:do:: if

www.manaraa.com

/*since rule 4 has priority over rule 1,*//*rule 1 should only be selected if rule 4 is*//*not in Rc*/:: (c[0]==1) && (c[3]==0) -> c[0]=0;selected!0:: c[1]==1 -> c[1]=0;selected!1:: c[2]==1 -> c[2]=0;selected!2:: c[3]==1 -> c[3]=0;selected!3:: else -> progress: done=1; breakfi;/*after control pass to system(), the environment waits for*//*the system to respond*/action?event,table,field,fire;/*determine which rules were triggered by the system's action*//*this is the same routine as in the init() process*/temp=0;do:: (temp<=N) ->if:: event==rules[temp].triggeredby&& table==rules[temp].triggeredtab&& field==rules[temp].triggeredfie && fire==1 -> c[temp]=1;temp=temp+1:: else -> temp=temp+1;fi:: (temp>N) -> breakododghas local variables which bind the information sent by process system. ThePromela if-statement | a case-statement in disguise | has an unusual seman-tics. If several case test patterns evaluate to 1 it will not merely execute thetop-most case | as would be the case with most functional and imperativeprogramming languages | but exhaustively explore the program behavior ofall these cases. This was the operative reason for choosing Spin over the modelchecker SMV as its case-statement follows the conventional semantics, resultingin an aggravated state-explosion. Note how the case test patterns simply checkwhether c[i] equals 1, in case that there are no overwriting priorities. If a rule ispreceded by other rules, we simply code this as a conjunction of literals. For ex-ample, the test pattern (c[0]==1) && (c[3]==0) makes sure that rule 1 won'tbe selected if rule 4 is triggered as well. After environment obtained the infor-

www.manaraa.com

mation from channel action, it executes a loop which determines which rulesare being triggered by this event and updates the boolean vector c accordingly.The system processproctype system()f int rulenum;mtype event,table,field;end:do /*receive the selected rule from the environment*/:: selected?rulenum;/*determine the selected rule's associated action*/event = rules[rulenum].actionexec;table = rules[rulenum].actiontab;field = rules[rulenum].actionfie;if/*if an EA rule is under consideration always execute its action*/:: rules[rulenum].rtype==0 -> action!event,table,field,1:: rules[rulenum].rtype==1 ->/*if an ECA rule is under consideration, non-deterministically choose*//*whether or not to execute its action*/if:: action!event,table,field,0:: action!event,table,field,1fifiodgghas local variables for representing the action (event,table,field) and theselected rule provided by process environment (rulenum). This process simplydetermines the action associated with the selected rule. If this rule is an EArule, this action will be executed, resulting in the ag 1 as the fourth valueto be send to environment. Otherwise, the rule is a general ECA rule. Weabstract the actual operational semantics of our intermediate language by aPromela if-statement which exhaustively explores the program behavior for bothpossibilities: sending the ag 0 along with the action to environment meansthat the action is not executed and rule selection resumes; sending the ag1, however, means that the environment executes this action, resulting is anupdated consideration set etc.3.2 Abstract interpretation and safe LTL model checksSpin uses LTL formulas whose propositional atoms are boolean expressions re-ferring to the state of a given Promela model or program points reached during

www.manaraa.com

its exeuction. For example, determining whether the consideration of one ruleeventually leads to the consideration of another rule is expressed by the LTLformula [](c[i]==1 -> <>(c[j]==1)) where i,j < N. The GUI for our rulesystem design o�ers a variety of such LTL formulas as options to be includedinto the generated Promela program.Abstract interpretation is a methodology for program analysis unifying seem-ingly quite di�erent modes of analysis (e.g. invariants, strictness analysis, convexpolyhedra for the analysis of hybrid systems etc) under one conceptual umbrella.At the core, one considers state transition systems (S;R; I), where R � S�S isthe state transition relation, and I � S is the set of initial states. One then stud-ies hierarchies of abstractions thereof: (S0; R0; I 0) is an abstraction of (S;R; I) ifthere exist monotone functions �:S ! S0 and :S0 ! S with � � = id and � � � id such that I is contained in (I 0) and such that for all s0 2 S0 wehave that post((s0)) is a subset of (post(s0)). Here post(X) is the strongestpostcondition of X , i.e. the set of all states which can be reached from X withinone computation step. Note that our \concrete" semantics is already a collect-ing semantics [11] and as such already a form of abstraction. The abstractioninduced by the if-statement for ECA rules simply enlarges the transition rela-tion: we go from (S;R; I) to (S;R0; I) for some R � R0 and have � = = id.Thus, any computation path of the system (S;R; I) beginning in a state in Iis also a computation path in the abstracted system. So if the LTL formula[](c[i]==1 -> <>(c[j]==1)) holds in state �(s), then we know that it musthold in s as well. Otherwise, there would be a computation path beginning in swhich fails that property. Similar reasoning applies to our termination check andother properties we deemed to be important for rule analysis. Since all of theseLTL formulas are also in the universal fragment of CTL*, such safety resultsare hardly surprising given the results in [7] for this temporal logic for modelchecking with abstraction.4 Implementation architectureIn model checking rule systems of ADBMSs de�ned in our intermediate lan-guage, we chose to omit any representation of database states in our model. Wealready explained how this can be seen as a conventional abstract interpretationand that it justi�es safe model checks of important speci�cation patterns codedin LTL. The Promela code of our running example was automatically gener-ated from the static information speci�ed in a GUI for rule design. This simpleGUI application, written in Java, allows a user to de�ne, modify, interactivelyedit rule systems, and save them for future analysis. This platform also enablesdesigners to automatically generate the Promela code represented by the rulesystem de�ned so far, and execute that model with a number of LTL speci�ca-tions beginning in a user speci�ed initial state. Sample speci�cations supportedby this tool are deterministic ordering and rule integrity constraints. A termi-nation check of rule �ring is enforced implicitly by our implementation. Our ap-plication generates Starburst rule processing models based on our intermediate

www.manaraa.com

language for rule design, but could be customized to generate Promela modelsreecting the execution semantics of another paradigm. Figure 1 illustrates ahigh-level architectural description of this implementation. Spin's countertracefacility, which produces a graphical counter-example whenever a property is notsatis�ed, proved to be most useful for analyzing rule behavior. Of course, Spinwill return only one possible countertrace so the designer has to read o� conclu-sive information from that trace in order to debug his or her system.

Static RuleInformationenvironment systemroutines routines
TerminalInterface

Spin system
Spin model checker

Fig. 1. Architecture of our platform for rule system design and analysis.
5 Related workPrevious e�orts at analyzing rule systems can be found in [1, 5, 22, 23]. Thesee�orts were directed speci�cally towards Starburst. In [2] one �nds approximativealgorithms for analyzing the following three properties: termination of a set ofrules, conuence of a set of rules, and observably deterministic behavior of a set ofrules. It is hardly surprising that attempts to analyze these properties have beensomewhat inconclusive. In fact, these notions are in general undecidable [12].6 Conclusion and outlookWe used our tool to generate models of rules processing for rule sets of varioussizes and complexity. Then we analyzed properties such as termination, con-uence, and rule integrity constraints. In analyzing termination, rule integrityconstraints, and deterministic ordering properties for a set of twenty ECA rules,

www.manaraa.com

we tested the accuracy of our model by seeding it with various violations tothese properties. In all cases, Spin agged these errors and provided a visualcounter-example of where the property failed; since we compute with conditionssymbolically, this is informative even though the data values are abstracted. Thee�ect of additional non-determinism caused the state space to grow quite dra-matically. In one case the size of the state space reached 215,000 states. Thisclearly indicates that our analysis is susceptible to the \state-explosion" prob-lem [4]. Upon prioritizing rules the state space decreased considerably. In [1] itis suggested that large rule sets often can be \partitioned" into smaller, inde-pendent groups of rules. Since rules in one group could not a�ect the behavior ofrules in another group, each partition could be analyzed separately, hence allevi-ating the size of the state space. We would like to add more detail to our Promelamodels in an e�ort to obtain more �ne-grained rule analysis, e.g. by simulatingrule untriggering. We are also interested in exploring techniques for state-spacereduction using �lter-based re�nement [13], to \�lter out" or eliminate unlikelyor impossible computation paths. There are good reasons for having a domain-speci�c language (DSL) for formulating rule systems. The latter would allow theconventional tools of program analysis such as partial evaluation and (re�ned)abstract interpretation to operate on rule system speci�cations directly. We be-lieve rule analysis in our framework can be e�ectively used in conjunction withthe conuence requirement algorithm [1] by isolating certain rule pairs for whichit is not even necessary to apply that algorithm, and providing a \tool box" ofspeci�cations for determining whether a pair of rules commute.Other applications for this methodology are conceivable. For example, thereare rule systems for the generation of database query optimizations using arewrite system.References1. A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of database production rules:Termination, conuence, and observable determinism. In Proceedings of the ACMSIGMOD International Conference on Management of Data, pages 59{68, SanDiego, California, June 1992.2. E. Baralis and J. Widom. An algebraic approach to rule analysis in expert databasesystems. In Proceedings of the Twentieth International Conference on Very LargeData Bases, Santiago, Chile, 1994.3. R. R. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Di-agrams. ACM Computing Surveys, 24(3):293{318, September 1992.4. J. R. Burch, E. M. Clarke, D. L. Dill K. L. McMillan, and J. Hwang. Symbolicmodel checking: 1020 states and beyond. Proceedings of the Fifth Annual Sympo-sium on Logic in Computer Science, June 1990.5. S. Ceri and J. Widom. Deriving production rules for constraint maintenance. InProceedings of the Sixteenth International Conference on Very Large Data Bases,pages 566{577, Brisbane, Australia, August 1990.6. E. Clarke, O. Grumberg, and D. Long. Model Checking and Abstraction. ACMTransactions on Programming Languages and Systems, 16(5):1512{1542, Septem-ber 1994.

www.manaraa.com

7. E. Clarke, J. M. Wing, and et al. Formal Methods: State of the Art and FutureDirections. ACM Computing Surveys, 28(4):626{643, December 1996.8. E. M. Clarke and E. M. Emerson. Synthesis of synchronization skeletons for branch-ing time temporal logic. In D. Kozen, editor, Proc. Logic of Programs, volume 131of LNCS. Springer Verlag, 1981.9. R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in Abstractions of ModelChecking. In A. Mycroft, editor, Statis Analysis, volume 983 of Lecture Notesin Computer Science, pages 51{63. Springer Verlag, September 1995. Glasgow,United Kingdom.10. R. Cleaveland and J. Riely. Testing-Based Abstractions for Value-Passing Systems.In B. Jonsson and P. Parrow, editors, Proceedings of Concur'94, volume 836 ofLecture Notes in Computer Science, pages 417{432. Springer Verlag, August 1994.Uppsala, Sweden.11. P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for staticanalysis of programs. In Proc. 4th ACM Symp. on Principles of ProgrammingLanguages, pages 238{252. ACM Press, 1977.12. K. R. Dittrich, S. Gatzui, and A. Geppert. The active database managementsystem manifesto: A rulebase of adbms features. In Second International Workshopon Rules in Database Systems, pages 3{20, Athens, Greece, September 1995.13. M. B. Dwyer. Modular Flow Analysis for Concurrent Software. In Proceedingsof the 12th International Conference on Automated Software Engineering, pages264{273, November 1997.14. D. R. McCarthy and U. Dayal. The architecture of an active database manage-ment system. In Proceedings of the ACM SIGMOD International Conference onManagement of Data, pages 215{224, Portland, Oregon, May 1989.15. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.16. S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.ACM Trans. on Programming Languages and Systems, 4(3):455{495, 1982.17. A. Pnueli. Applications of temporal logic to the speci�cation and veri�cation ofreactive systems: a survey of current trends. In J.W. de Bakker, editor, CurrentTrends in Concurrency, volume 224 of Lecture Notes in Computer Science, pages510{584. Springer-Verlag, 1985.18. J. P. Quielle and J. Sifakis. Speci�cation and veri�cation of concurrent systems incesar. In Proceedings of the �fth International Symposium on Programming, 1981.19. M. Stonebreaker. The integration of rule systems and database systems. IEEETransactions on Knowledge and Data Engineering, 4(5):415{423, October 1992.Invited Paper.20. M. Stonebreaker, editor. Readings in Database Systems, chapter 4, pages 345{349.Morgan Kaufman Publishers, 2 edition, 1994.21. J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules forAdvanced Data Processing, chapter 4, pages 32{33,88{108. Morgan Kaufman Pub-lishers, 1996.22. J. Widom, R. J. Cochrance, and B. G. Lindsay. Implementing set-oriented pro-duction rules as an extension to starburst. In Proceedings of the Seventeenth Inter-national Conference on Very Large Data Bases, pages 275{285, Barcelona, Spain,September 1991.23. J. Widom and S. J. Finkelstein. Set-oriented production rules in relational databasesystems. In Proceedings of the ACM SIGMOD International Conference on Man-agement of Data, pages 259{270, Atlantic City, New Jersey, May 1990.

